Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pers Med ; 11(8)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34442335

RESUMO

For many years, the risk-based therapy stratification of children with neuroblastoma has relied on clinical and molecular covariates. In recent years, genome analysis has revealed further alterations defining risk, tumor biology, and therapeutic targets. The implementation of a robust and scalable method for analyzing traditional and new molecular markers in routine diagnostics is an urgent clinical need. Here, we investigated targeted panel sequencing as a diagnostic approach to analyze all relevant genomic neuroblastoma risk markers in one assay. Our "neuroblastoma hybrid capture sequencing panel" (NB-HCSP) assay employs a technology for the high-coverage sequencing (>1000×) of 55 selected genes and neuroblastoma-relevant genomic regions, which allows for the detection of single nucleotide changes, structural rearrangements, and copy number alterations. We validated our assay by analyzing 15 neuroblastoma cell lines and a cohort of 20 neuroblastomas, for which reference routine diagnostic data and genome sequencing data were available. We observed a high concordance for risk markers identified by the NB-HSCP assay, clinical routine diagnostics, and genome sequencing. Subsequently, we demonstrated clinical applicability of the NB-HCSP assay by analyzing routine clinical samples. We conclude that the NB-HCSP assay may be implemented into routine diagnostics as a single assay that covers all essential covariates for initial neuroblastoma classification, extended risk stratification, and targeted therapy selection.

2.
Children (Basel) ; 8(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572828

RESUMO

Extravasation can present serious accidental complication of intravenous drug application. While monoclonal antibodies do not show the necrotic potential of cytotoxic chemotherapy drugs, considerable inflammatory toxicity can occur, necessitating standardized operating procedures for the management of their extravasation. Here, we report the clinical course and management of dinutuximab beta extravasation in a 3-year-old child. Dinutuximab beta is a chimeric monoclonal antibody targeting the GD2 disialoganglioside on the surface of neuroblastoma cells that has in recent years gained significant importance in the treatment of high-risk neuroblastoma, now contributing to both first- and second-line therapy protocols. The dinutuximab beta extravasation reported here occurred when the patient received the antibody cycle as a continuous infusion over a 10-day period after haploidentical stem cell transplantation for relapsed high-risk neuroblastoma. The extravasated dinutuximab beta caused local pain, swelling, and hyperemia accompanied by fever and an overall deterioration in the general condition. Laboratory diagnostics demonstrated an increase in C-reactive protein level and total white blood cell count. Clinical complication management consisted of intravenous fluid therapy, local dabbing with dimethyl sulfoxide (DMSO), analgesia with dipyrone, as well as application of intravenous antibiotics to prevent bacterial superinfection in the severely immunocompromised host. The patient considerably improved after six days with this treatment regimen and fully recovered by day 20.

4.
Front Oncol ; 10: 617506, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552991

RESUMO

OBJECTIVE: Radiotherapy (RT) is an integral part of the interdisciplinary treatment of patients with high-risk neuroblastoma (NB). With the continuous improvements of outcome, the interest in local treatment strategies that reduce treatment-related side effects while achieving optimal oncological results is growing. Proton beam therapy (PBT) represents a promising alternative to conventional photon irradiation with regard to the reduction of treatment burden. METHOD: Retrospective analysis of children with high or intermediate risk NB receiving PBT of the primary tumor site during first-line therapy between 2015 and 2020 was performed. Data from the prospective in-house registry Standard Protonentherapie WPE - Kinder- (KiProReg) with respect to tumor control and treatment toxicity were analyzed. Adverse events were classified according to CTCAE Version 4 (V4.0) before, during, and after PBT. RESULTS: In total, 44 patients (24 male, 20 female) with high (n = 39) or intermediate risk NB (n = 5) were included in the analysis. Median age was 3.4 years (range, 1.4-9.9 years). PBT doses ranged from 21.0 to 39.6 Gray (Gy) (median 36.0 Gy). Five patients received PBT to the MIBG-avid residual at the primary tumor site at time of PBT according to the NB-2004 protocol. In 39 patients radiation was given to the pre-operative tumor bed with or without an additional boost in case of residual tumor. After a median follow-up (FU) of 27.6 months, eight patients developed progression, either local recurrence (n = 1) or distant metastases (n = 7). Four patients died due to tumor progression. At three years, the estimated local control, distant metastatic free survival, progression free survival, and overall survival was 97.7, 84.1, 81.8, and 90.9%, respectively. During radiation, seven patients experienced higher-grade (CTCAE ≥ °3) hematologic toxicity. No other higher grade acute toxicity occurred. After PBT, one patient developed transient myelitis while receiving immunotherapy. No higher grade long-term toxicity was observed up to date. CONCLUSION: PBT was a well tolerated and effective local treatment in children with high and intermediate risk NB. The role of RT in an intensive multidisciplinary treatment regimen remains to be studied in the future in order to better define timing, doses, target volumes, and general need for RT in a particularly sensitive cohort of patients.

5.
Int J Cancer ; 146(4): 1031-1041, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31304977

RESUMO

Accurate modeling of intratumor heterogeneity presents a bottleneck against drug testing. Flexibility in a preclinical platform is also desirable to support assessment of different endpoints. We established the model system, OHC-NB1, from a bone marrow metastasis from a patient diagnosed with MYCN-amplified neuroblastoma and performed whole-exome sequencing on the source metastasis and the different models and passages during model development (monolayer cell line, 3D spheroid culture and subcutaneous xenograft tumors propagated in mice). OHC-NB1 harbors a MYCN amplification in double minutes, 1p deletion, 17q gain and diploid karyotype, which persisted in all models. A total of 80-540 single-nucleotide variants (SNVs) was detected in each sample, and comparisons between the source metastasis and models identified 34 of 80 somatic SNVs to be propagated in the models. Clonal reconstruction using the combined copy number and SNV data revealed marked clonal heterogeneity in the originating metastasis, with four clones being reflected in the model systems. The set of OHC-NB1 models represents 43% of somatic SNVs and 23% of the cellularity in the originating metastasis with varying clonal compositions, indicating that heterogeneity is partially preserved in our model system.


Assuntos
Modelos Animais de Doenças , Neuroblastoma/genética , Neuroblastoma/patologia , Neoplasias Abdominais/genética , Neoplasias Abdominais/patologia , Animais , Feminino , Heterogeneidade Genética , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos SCID , Neoplasias Torácicas/genética , Neoplasias Torácicas/patologia , Células Tumorais Cultivadas
6.
Nat Genet ; 52(1): 29-34, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31844324

RESUMO

Extrachromosomal circularization of DNA is an important genomic feature in cancer. However, the structure, composition and genome-wide frequency of extrachromosomal circular DNA have not yet been profiled extensively. Here, we combine genomic and transcriptomic approaches to describe the landscape of extrachromosomal circular DNA in neuroblastoma, a tumor arising in childhood from primitive cells of the sympathetic nervous system. Our analysis identifies and characterizes a wide catalog of somatically acquired and undescribed extrachromosomal circular DNAs. Moreover, we find that extrachromosomal circular DNAs are an unanticipated major source of somatic rearrangements, contributing to oncogenic remodeling through chimeric circularization and reintegration of circular DNA into the linear genome. Cancer-causing lesions can emerge out of circle-derived rearrangements and are associated with adverse clinical outcome. It is highly probable that circle-derived rearrangements represent an ongoing mutagenic process. Thus, extrachromosomal circular DNAs represent a multihit mutagenic process, with important functional and clinical implications for the origins of genomic remodeling in cancer.


Assuntos
Carcinogênese/patologia , DNA Circular/genética , Herança Extracromossômica/genética , Rearranjo Gênico , Genoma Humano , Neuroblastoma/patologia , Oncogenes/genética , Recombinação Genética , Humanos , Neuroblastoma/genética , Células Tumorais Cultivadas
7.
Cell Death Dis ; 8(3): e2635, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28252645

RESUMO

The number of long-term survivors of high-risk neuroblastoma remains discouraging, with 10-year survival as low as 20%, despite decades of considerable international efforts to improve outcome. Major obstacles remain and include managing resistance to induction therapy, which causes tumor progression and early death in high-risk patients, and managing chemotherapy-resistant relapses, which can occur years after the initial diagnosis. Identifying and validating novel therapeutic targets is essential to improve treatment. Delineating and deciphering specific functions of single histone deacetylases in neuroblastoma may support development of targeted acetylome-modifying therapeutics for patients with molecularly defined high-risk neuroblastoma profiles. We show here that HDAC11 depletion in MYCN-driven neuroblastoma cell lines strongly induces cell death, mostly mediated by apoptotic programs. Genes necessary for mitotic cell cycle progression and cell division were most prominently enriched in at least two of three time points in whole-genome expression data combined from two cell systems, and all nine genes in these functional categories were strongly repressed, including CENPA, KIF14, KIF23 and RACGAP1. Enforced expression of one selected candidate, RACGAP1, partially rescued the induction of apoptosis caused by HDAC11 depletion. High-level expression of all nine genes in primary neuroblastomas significantly correlated with unfavorable overall and event-free survival in patients, suggesting a role in mediating the more aggressive biological and clinical phenotype of these tumors. Our study identified a group of cell cycle-promoting genes regulated by HDAC11, being both predictors of unfavorable patient outcome and essential for tumor cell viability. The data indicate a significant role of HDAC11 for mitotic cell cycle progression and survival of MYCN-amplified neuroblastoma cells, and suggests that HDAC11 could be a valuable drug target.


Assuntos
Ciclo Celular/genética , Sobrevivência Celular/genética , Histona Desacetilases/metabolismo , Mitose/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Intervalo Livre de Doença , Expressão Gênica/genética , Genes cdc/genética , Humanos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo
8.
Oncotarget ; 7(41): 66344-66359, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27572323

RESUMO

The systemic and resistant nature of metastatic neuroblastoma renders it largely incurable with current multimodal treatment. Clinical progression stems mainly from the increasing burden of metastatic colonization. Therapeutically inhibiting the migration-invasion-metastasis cascade would be of great benefit, but the mechanisms driving this cycle are as yet poorly understood. In-depth transcriptome analyses and ChIP-qPCR identified the cell surface glycoprotein, CD9, as a major downstream player and direct target of the recently described GRHL1 tumor suppressor. CD9 is known to block or facilitate cancer cell motility and metastasis dependent upon entity. High-level CD9 expression in primary neuroblastomas correlated with patient survival and established markers for favorable disease. Low-level CD9 expression was an independent risk factor for adverse outcome. MYCN and HDAC5 colocalized to the CD9 promoter and repressed transcription. CD9 expression diminished with progressive tumor development in the TH-MYCN transgenic mouse model for neuroblastoma, and CD9 expression in neuroblastic tumors was far below that in ganglia from wildtype mice. Primary neuroblastomas lacking MYCN amplifications displayed differential CD9 promoter methylation in methyl-CpG-binding domain sequencing analyses, and high-level methylation was associated with advanced stage disease, supporting epigenetic regulation. Inducing CD9 expression in a SH-EP cell model inhibited migration and invasion in Boyden chamber assays. Enforced CD9 expression in neuroblastoma cells transplanted onto chicken chorioallantoic membranes strongly reduced metastasis to embryonic bone marrow. Combined treatment of neuroblastoma cells with HDAC/DNA methyltransferase inhibitors synergistically induced CD9 expression despite hypoxic, metabolic or cytotoxic stress. Our results show CD9 is a critical and indirectly druggable suppressor of the invasion-metastasis cycle in neuroblastoma.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Histona Desacetilases/metabolismo , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/patologia , Tetraspanina 29/biossíntese , Animais , Histona Desacetilases/genética , Humanos , Camundongos , Camundongos Transgênicos , Proteína Proto-Oncogênica N-Myc/genética , Invasividade Neoplásica/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Tetraspanina 29/genética
9.
Cancer Res ; 74(9): 2604-16, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24419085

RESUMO

Neuroblastoma is an embryonic solid tumor of neural crest origin and accounts for 11% of all cancer-related deaths in children. Novel therapeutic strategies are therefore urgently required. MYCN oncogene amplification, which occurs in 20% of neuroblastomas, is a hallmark of high risk. Here, we aimed to exploit molecular mechanisms that can be pharmacologically addressed with epigenetically modifying drugs, such as histone deacetylase (HDAC) inhibitors. Grainyhead-like 1 (GRHL1), a gene critical for Drosophila neural development, belonged to the genes most strongly responding to HDAC inhibitor treatment of neuroblastoma cells in a genome-wide screen. An increase in the histone H4 pan-acetylation associated with its promoter preceded transcriptional activation. Physically adjacent, HDAC3 and MYCN colocalized to the GRHL1 promoter and repressed its transcription. High-level GRHL1 expression in primary neuroblastomas correlated on transcriptional and translational levels with favorable patient survival and established clinical and molecular markers for favorable tumor biology, including lack of MYCN amplification. Enforced GRHL1 expression in MYCN-amplified neuroblastoma cells with low endogenous GRHL1 levels abrogated anchorage-independent colony formation, inhibited proliferation, and retarded xenograft growth in mice. GRHL1 knockdown in MYCN single-copy cells with high endogenous GRHL1 levels promoted colony formation. GRHL1 regulated 170 genes genome-wide, and most were involved in pathways regulated during neuroblastomagenesis, including nervous system development, proliferation, cell-cell adhesion, cell spreading, and cellular differentiation. In summary, the data presented here indicate a significant role of HDAC3 in the MYCN-mediated repression of GRHL1 and suggest drugs that block HDAC3 activity and suppress MYCN expression as promising candidates for novel treatment strategies of high-risk neuroblastoma.


Assuntos
Histona Desacetilases/fisiologia , Neuroblastoma/genética , Proteínas Nucleares/fisiologia , Proteínas Oncogênicas/fisiologia , Proteínas Repressoras/genética , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Genes Supressores de Tumor , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Lactente , Estimativa de Kaplan-Meier , Camundongos , Camundongos SCID , Proteína Proto-Oncogênica N-Myc , Transplante de Neoplasias , Neuroblastoma/metabolismo , Neuroblastoma/mortalidade , Neuroblastoma/patologia , Panobinostat , Proteínas Repressoras/metabolismo , Transcrição Gênica , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...